BELFAST SEWERS PROJECT
Adam Green - Atkins Tunnelling

Scheme Overview
- New stormwater interceptor Tunnel Scheme within Belfast City Centre to alleviate flooding and divert storm water flows from existing water courses.
- Diversion of 1.5M m\(^3\) of stormwater to a new screening facility within existing Duncrue Wastewater Treatment Works.
- Atkins appointed 8th July 2003 by DRD Water Service on a Project Management contract.
- Atkins team includes AMEC for Tunnelling Expertise and Construction Techniques.

Alternative Strategy - Tunnels
- Alternative Strategy accepted due to Team having all required skills to define the solution.

The appointed Project Manager undertakes:
- Primary responsibility for definition of the Works (provide a 70-80% design to the Contractors);
- Manages all 3rd Party interfaces; land, property, traffic, compensation etc;
- Competitively tenders the Works to the market on ECC Option C (Target Cost) Contract Conditions.

Delivery Benefits
- Places risk and applies focus of the respective skills of the Project Manager and Contractor to those areas of the Project which are best managed by each party;
- Utilises PM skills: modelling, design, geotechnical, constructability, traffic and environmental management, land and property / structural engineering;
- Utilises Contractor skills: design / construction of tunnel lining, shaft construction, structural design of RC elements;
- Provides a well defined scope of works to be costed – ensures cost competitiveness from the market;

Phase 1 - Identification
- Identify Existing Geotechnical Environment and Hazards
- Desk Study
 - Contaminated lands
 - Historic geological records
 - Existing land use (utilities/buildings/planned development)
 - Archaeological
- Borehole Record Search
- Procure GI contractor
- Tunnel Design
 - Develop tunnel route options
 - Tunnel design criteria

Phased Design Development
Development of Geotechnical Investigation:
- Identification
- Investigation
- Detailed Investigation
Stormwater Tunnel Route Criteria

- Shafts located to intercept major storm overflows
- Tunnels to be driven in more favourable tunnelling strata
- Construction to avoid existing piled building foundations and road infrastructure
- Shafts and tunnels located to minimise construction, traffic and environmental impacts

Geology

The typical geology of the area, in sequence, comprises:

1. Made Ground
2. Alluvium (including Sleech, Estuary Clay, Peat)
3. Glacial Deposits (Boulder Clay, Sands and Gravels)
4. Intrusive Dykes and Sills
5. Mercia Mudstone
6. Sherwood Sandstone

Geotechnical - Hazards

- Methane – Landfills, Sleech, Peat
- Boulders – Glacial Deposits
- Mixed Face Conditions – Alluvium, Sleech, Glacial
- Running Sands
- Igneous Intrusions – No Warning
- River Flooding
- Buried Channels – Bedrock
- High Sulphate Content – Peat, Sleech
- Future Development – route sterilisation
- Unexploded Munitions – 1941
- Services
- Heritage Sites

Phase 2 - Investigation

Investigate Geotechnical Conditions and Specific Hazards

- Under take intrusive ground investigation
- Additional Specific Desk Studies
 - Ground-borne noise and vibration assessment
 - Unexploded Ordnance
 - Manmade Obstructions (piles/foundations/underground structures)
 - Settlement assessment
- Tunnel Design
 - Confirm final tunnel alignment (horizontal and vertical)
 - Confirm shaft locations

Ground Settlement Assessment

Key Activities:

- Modelling of tunnelling induced ground settlement
 - 3 stage approach to settlement assessment
- Walkover Survey and Visual Assessment of Properties
- Desktop study of Existing Structures
- Establishment of existing foundation types along tunnel route

TYPICAL DRAWING SHOWING EXTENT OF WALK THROUGH SURVEY - CATEGORIES
Geotechnical Investigations

- 51 Boreholes
 - 1200m of Cable Percussive Hole
 - 280m of Rotary Cored Hole
 - 1830 Soil Samples
 - 52 Core Samples
 - 426 Chemical Test Packages
 - 2 Photographic / Acoustic bore hole logs
- 12 CPT (Cone Penetration Tests)
- 2852m of Shear Wave Seismic Investigation
- Site Investigation Contractors
 - Glover Site Investigations Ltd (Principal Contractor)
 - Robertson Geo-Logging Ltd
 - Lankelma Cone Penetration Testing Ltd
 - Zetica (Geo-Services International (UK) Ltd)

Phase 3 – Detailed Investigation

Investigate Specific Geotechnical Conditions and Hazards

- Additional focused ground investigation
 - Seven further percussive and rotary boreholes
 - Seismic survey

Tunnel Design

- Confirm final tunnel design solution

Geophysical Investigations

- **Aim:**
 - Determine depth to bedrock
 - Determine location of intrusive material
 - Shear wave seismic reflection
 - 3 locations within Belfast
 - 10 Survey Lines

Dolerite Dyke Locations

- **DYK Locations from Historical Boreholes**
- **DYK Locations from New Boreholes**
- **Possible Dyke Locations from Seismic Survey**
Route Geology

Tunnel & Shafts
- 37m internal diameter
- Up to 37m deep
- Total Storage 84,749m³
- Storm Pumps 16.75m³/s

Terminal Pumping Station
- 37m internal diameter
- Up to 37m deep
- Total Storage 84,749m³
- Storm Pumps 16.75m³/s

Final Design Solution
- Development of a detailed project ground model to assist in tunnel design and cost development
- Full Cost Plan including risk provision, contingencies proposal for final tunnel route option
- Primavera P3 Construction Programme of Stormwater Management Works
- Provides Water Service with robust cost, risk profiles for the final tunnel design solution

Summary
- Phased Investigation enabled the Geotechnical Investigation to Target high risk areas during the design
- Detailed package of Geotechnical information available from third parties and design team to enable contractor’s to accurately price contract works and include appropriate risk allowance
- Provide DRD Water Service with a robust target cost
QUESTIONS