

	24 47		
Factor	Existing	Reason	
Historical incidences of bog	LOW to	Bog bursts are not a common occurrence, however, a number have	
burst in North West	MEDIUM	been recorded in the north west of the Island.	
Historical incidences of bog	LOW	There are no recorded incidences of bog bursts on the site. Aerial	
burst on site.		photographs and site investigations revealed no evidence of	
		historical bog bursts.	
Rainfall	MEDIUM	Annual rainfall is high in the western part of the province and is	
		particularly high in upland areas. Bog bursts have been associated	
		with extreme precipitation events or snowmelt.	
Hydrology	LOW to	Bog bursts are sometimes associated with over saturated of peat,	
	MEDIUM	especially where this peat crosses a break in slope. There are a	
		number of areas on the site where water content in the peat is high.	
Man made drainage	LOW	Current man-made drainage lies perpendicular to the bog margin	
		and is unlikely to significantly affect slope stability.	
Peat depth	LOW to	Bog burst can occur on various depths of upland peat. The variation	
	MEDIUM	in peat depth is typical of blanket bogs where bursts have occurred	
		in the past.	
Slope	MEDIUM	Bog bursts can occur on relatively minor slopes (as low as 2°).	
		Some bog bursts have been associated with break in slope, which	
		can act as a pathway for the release of built up water at the base of	
		peat. The topography on Tappaghan Mt. is highly variable.	
Land use	MEDIUM	The current land uses have been associated with bog bursts that	
	1	have occurred in the past.	

Impact	Risk Assessment	Mitigation Measure	
Disruption of flow	Disruption of flow regime may	Installation of transverse drainage across the access tracks	
regime	cause excessive water build up or	to allow through flow of surface and subsurface water. Any	1
	drying of peat leading to instability.	streams, pipes or drains to be culverted.	1
	Associated risk: HIGH		1
Increased runoff	Increased runoff from road and	Tracks constructed to allow water to flow off the road into	1
	hardstanding may cause erosion	the drainage ditches rather than along the length of the	1
	and hence weakening of peat.	track. Hardstanding areas to be surfaced with gravel and	1
	Associated risk: MEDIUM	allowed to revegetate to allow infiltration and prevent rapid	1
		surface runoff.	1
Changing peat depth	Cutting into peat may provide an	Minimisation of depth of excavation. Drainage ditches to be	1
by excavation	outlet for water that has	dug with sufficient angle to prevent collapse of drain wall.	1
	accumulated at the base of the	Drainage ditches to be filled with gravel to provide	1
	peat, which could trigger a bog	additional support of drain wall. All plant should follow	1
	burst.	prescribed travel routes across the site in order to prevent	1
	Associated risk: HIGH	excessive disturbance of exposed soils.	1
Changing peat depth	Excavated material stored on	No concentrated loads of excavated material should be	1
by storing of	marginally stable peat may trigger a	stored on marginally stable ground. The suitability of the	1
excavated material	bog burst.	ground on which excavated material is to be placed should	1
	Associated risk: HIGH	be assessed prior to storage.	1
	1	1	

1	White Summary Green
- 4	
В	efore Bog Burst Issues Became Recognised as a Concern:-
Ę	Straight forward 'Soils and Waters Assessment' Usually Sufficient - Cost c £3,000 - £5,000
Ę	Planning Usually Relatively Straight Forward for Soils / Waters Issues
(Geotechnical Investigations and Detailed Designs for Foundations set as Condition of Planning, not part of EIA
🗆 Ne	ow Bog Bursts are recognised as a Concern:-
Ę	Carry out Initial Soils and Waters Assessment, and identify Potential for Bog Burst
Ę	If Significant Risk, then
Ę	Geotechnical Investigation
Ę	Peat Stability Assessment, Mitigation Measures, Design Monitoring Programme
Ę	Included in EIA
Ę	Monitoring Programme for Peat Stability set as Condition of Planning
C	Costs Could be in Order of £30,000 - £50,000
	www.wyq.com