Aggregates and stone – the Irish situation

Peter Strogen B.Sc., Ph.D., PGeo Consultant Geologist

Uses of natural stone

- Concrete aggregate fine & coarse
- 2. Structural Concrete
- 3. Road sub-base, base & top-dressing
- 4. Rock-fill embankments &c.
- 5. Gabions -retaining walls, revetments
- 6. Dimension stone, armour stone
- 7. Specialist sands filter beds, mortars etc.
- 8. Rail ballast

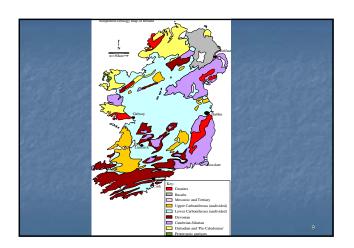
2

Sources of coarse aggregates

- Bedrock quarries
- Crushed gravels
- (Recycled concrete)

Coarse aggregate

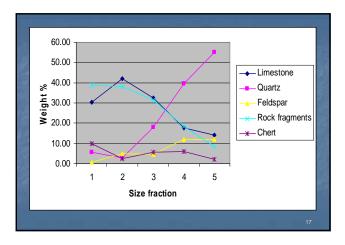
- Bedrock
- Petrographically simple
- Uniform properties easily characterised
- Easily graded crushing, screening & blending
- Irish examples all well known
- Crushed gravels
- Complex composition
- Less easily characterised
- Much like associated sands in composition


Bedrock quarries in Ireland

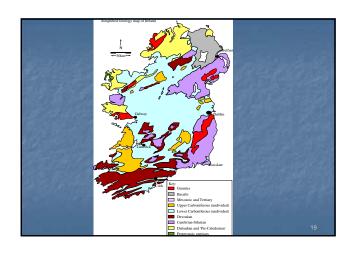
- Carboniferous limestone
- Lower Palaeozoic graywacke
- Lower Palaeozoic volcanic rock
- Old Red Sandstone
- Antrim basalt
- Namurian sandstone

	AIV	ACV	AAV	10% Fines	PSV	% Water abs.	MgSO4	LAAV
Carbonif	erous Lin	nestone						NAS-
Mean	19.1	22.5	9.8	190	42.8	0.69	97.0	26.25
S. Dev	2.91	2.25	2.28	26	3.68	0.34	0.50	3.30
Range	14 -26	18-26	6 - 15.7	155-290	34-47	0.3-1.6	95-99	22-30
Lower Palaeozoic volcanic rocks								
Mean	11.9	13.5	4.65	315	57	0.9	98	
S. Dev	2.28	1.76		43		0.2		951
Range	8-14	12-17	3.1-5.7	270-380	50-63	0.2-1.1	98-99	
Lower P	alaeozoic	greywad	kes					
Mean	10.0	10.7	6.73	375	64	0.5	98	2551
S. Dev	0.9	1.0	1.6	38	2.8			100
Range	9-12		4.8-9.4	320-400	62-68			

Deleterious substances in Irish bedrock aggregates Clay – Imestones especially Pyrites Chert Matrix of graywackes Alkali Aggregate Reaction Matrix of argillaceous limestones (dark, shaly limestones)

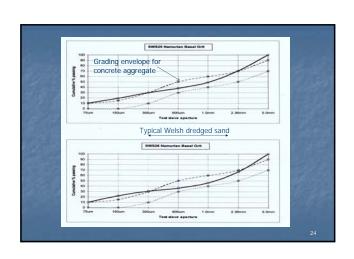

Alkali Aggregate Reaction Irish Carboniferous chert – unreactive thermally annealedhigh degree of crystallinity not microporous some pass, some fail Accelerated Mortar Bar Test Irish graywackes & argillaceous Carboniferous limestones fail Accelerated Mortar Bar Test

Fine aggregates 1. Glaciofluvial sands (well graded) 2. Marine dredged sands (poorly graded) 3. Crushed sandstones (poorly graded) 4. Crushed-rock fines (gap-graded)



	fferent parts of eposit	same sand
(Typical Irish Midlands sand)		
	2005/9	2005/11
Limestone	78.81	83.79
Quartz	4.85	3.03
Chert	13.59	10.38
Sandstone /siltstone	2.24	2.02
Dolomite	0.52	0.77
Totals	100.01	99.99

West Wicklow sands 2
(Baltinglass area)


Limestone 43.0 40.7 44.6 16.9 4.7
Chert 18.0 36.2 41.1 33.6 10.6
Quartz 30.5 10.0 8.8 19.3 49.0
Sandstone 1.5 9.1 1.7 2.5 0.6
Feldspar &c 9.9 30.8
Wackes &c 1.9 16.9 16.5
Volcanics 7.0 4.0 1.9 0.6

Dredged sands

Poorly graded – tidal reworked glacial deposits
Complex mineralogy. Shell content, ClEnvironmental problems – EIS costs
– ecological damage – fishing etc.
- shoreline erosion
- deep water, high cost

Crushed rock fines

Primary crushing - grading poor, clay
Re-crushing of clean stone
Poor shape – anisotropic – crushing technique

Crushed sandstones

- Friable easily reduced to sand again.
- Rare in Ireland mainly Mesozoic to Tertiary

Conclusions

- Ireland well endowed with stone reserves
- No problems of Alkali Aggregate Reaction
- Dredged sand/crushed rock sand to increase
- Greater use of borrow pits, cut & fill

References

- Strogen, P. 1993. Study of cherts in fine and coarse aggregates in Ireland. *Concrete*, 27, No.2, 26-29.

 McNally, C., Richardson, M. G., Carr, A. & Strogen, P. 2004. Domain size as a parameter for studying the potential alkali-silica reactivity of chertbearing aggregates. *Magazine of Concrete Research*, 56, No.4, 201-209.