

global environmental solutions

GEOLOGY OF PYRITE and CONSTRUCTION MATERIALS

John Kelly

Institute of Geologists of Ireland 4th December 2013

GEOLOGY of PYRITE and CONSTRUCTION MATERIALS - A ROUGH PLAN

- What is reactive pyrite?
- When is pyrite reactive and when is it not?
- How does pyrite cause heave?
- What rock types are likely to host reactive pyrite?
- What other factors are important?

PYRITE DISTRIBUTION AND FORMATION

- Pyrite is an exceptionally common and widely distributed sulphide mineral
- Other sulphide minerals (e.g. marcasite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena etc.) are also widely distributed in Ireland but are less common (although locally very abundant)
- Iron sulphides originally form in rocks due to
 - Sulphidation of iron in low-oxygen reducing depositional environments by sulphogenic bacteria (Fe + H₂S → FeS₂)
 - Crystallisation from magmas in volcanic settings
 - Growth during metamorphic re-crystallisation
 - Introduction into pre-existing rock by hydrothermal fluids
 - Deposition of detrital pyrite in sediments

PYRITE IN IRISH ROCKS

- Pyrite is present in significant quantities in a range of Irish rock environments:
 - Very dark grey to black calcareous shales and mudstones e.g.
 Viséan shales and mudstones (esp. Upper Viséan), Namurian shales and mudstones, Lr. Palaeozoic black shales etc.
 - May be locally present within dark grey to black limestones (e.g. "Calp") although many of these limestones have low pyrite or may be considered almost pyrite free
 - A number of metamorphic lithologies
 - Some volcanic rocks, e.g. Avoca Volcanic Formation, some Granitoids in Western Ireland
- The vast majority of limestones, sandstones, gritstones, slates, granites, andesites, dolerites, volcanic rocks and many metamorphic rocks have very low or almost absent quantities of pyrite – as have sands and gravels

- Pyrite is one form of iron sulphide (FeS₂).
- It is a naturally occurring, common and widespread mineral found in many (most) rock types
- Sulphide minerals may render rock a deleterious construction material if:
 - Rock is weak, non-durable and/or foliated (mudstones, siltstones, shales, part argillaceous lithologies)
 - Sulphides are present in sufficient quantities
 - Sulphides are reactive
 - Sulphides are exposed to water and air (oxygen)

PYRITE OXIDATION REACTION

$$2FeS_2 + 2H_2O + 7O_2 \rightarrow 2FeSO_4 + 2H_2SO_4$$

$$4FeSO4 + O2 + 2H2SO4 \rightarrow 2Fe2(SO4)3 + 2H2O$$
Ferric sulfate

$$Fe_2(SO_4)_3 + 6H_2O \rightarrow 2Fe(OH)_3 + 3H_2SO_4$$

Iron III Oxide "Yellow Boy"

+ Acidithiobacillus ferrooxidans

$$2Fe(OH)_3 \rightarrow + Fe_2O_3 + 3H_2O$$

PYRITE OXIDATION - CONSEQUENCES

 In calcareous rocks the carbonate - acid reaction leads to gypsum formation

•
$$H_2SO_4 + CaCO_3 + H_2O \rightarrow CaSO_4 - 2H_2O + CO_2$$

- If the rock is weak and non-durable, and the amount of gypsum formation is excessive, expansion of the rock will occur.
- The reaction will then continue as fresh pyrite is exposed to more air and water

WHERE DOES THE PROBLEM OCCUR

- Framboidal pyrite primarily forms in depositional environments where oxygen levels are extremely low and reducing conditions are present.
- Rock types deposited in these environments are typically dark-grey to black mudstones, shales, siltstones, argillaceous limestones – i.e. weak and non-durable
- Tober Colleen Formation, Rush Formation, Loughshinny Formation, Namurian Shales, Ordovician Black Shales interbedded with Rhyolites, etc., etc.,
- These lithologies fail standards on lithology, strength, durability, water absorption in any case and should never get to the stage where TS and AS testing is required

Quartz and Feldspars

Phyllosilicates (Clay Minerals)

MANAGING VARIABILITY

MANAGING VARIABILITY

HUNSRÜCK SLATE

- Hunsrück Slate outcrops in the Rhineland Palatinate area bounded by the Moselle and Rhine, east of Luxembourg
- Building material quarried for construction, roofing and cladding since Roman times.
- Internationally renowned for it's pyrite content

