Pyrite Testing explained
by Dr Bernadette Azzie

For the:
Institute of Geologists of Ireland
Pyrite CPD Course
4 December 2013
Start at the beginning ….

2FeS₂ + 2H₂O + 7O₂ → 2FeSO₄ + 2H₂SO₄

Pyrite Water Oxygen Ferrous sulphate Sulphuric acid

H₂SO₄ + CaCO₃ + H₂O → CaSO₄·2H₂O + CO₂

Sulphuric acid Calcite Water Gypsum Carbon dioxide
Our Goal

Does the sample contain rock types that are, or have been, associated with pyritic heave?

Need to identify the presence of reactive pyrite and secondary minerals that may be associated with heave (e.g. gypsum)
Chemical Reaction

- Pyrite (FeS$_2$) in framboidal form
- Reacts with moisture and air present in ground – oxidizes the pyrite, releasing sulphuric acid (H$_2$SO$_4$)
- These rocks typically have 20 to 30% calcite in them (like the problematic mudstones in Ireland), though only 1-2% calcite needed to feed reaction (Québec Shales). H$_2$SO$_4$ dissolves the calcite releasing Ca ions in to solution.
- The solution eventually becomes super saturated
- Crystallization of gypsum (CaSO$_4$ 2H$_2$O)
Hardcore Sample Report

Sampling of hardcore, with a visual inspection

Laboratory Test Report

Laboratory tests (specific for each test suite)

Overall Classification of hardcore
I.S. 398-1 Test Suites

Selection of a Suite depends on:

- Damage Condition Rating;
- Background information on the house (i.e. location, when built, etc.);
- Results of previous testing (if any);
- A Certificate is required.

<table>
<thead>
<tr>
<th>Test Suite</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Suite 0</td>
<td>Geological inspection</td>
</tr>
<tr>
<td></td>
<td>Chemical testing</td>
</tr>
<tr>
<td>Test Suite 1</td>
<td>Geological inspection</td>
</tr>
<tr>
<td></td>
<td>Chemical testing</td>
</tr>
<tr>
<td></td>
<td>Mineralogical analysis (XRD)</td>
</tr>
<tr>
<td>Test Suite 2 (following Suite 0 or Suite 1)</td>
<td>Thin section petrographic analysis</td>
</tr>
<tr>
<td></td>
<td>Water absorption</td>
</tr>
</tbody>
</table>
Overview of Testing Protocol

- Sample Handling and Preparation
- Visual Inspection and Geologic Description
- Chemical Testing
- Mineralogical Analysis
 - XRD
 - Petrographic microscopy
 - SEM
- Physical Tests
 - Water absorption
 - Abrasion tests
 - Particle size distribution, moisture
 - Etc.
How Much Sample Do you Need?

- What tests are going to be performed?
- 5kgs to 500kgs

I.S. 398-1:
- ≥ 500g blinding sand
- ≥ 25kg infill (per sample)
- 250mL standing water (if present)

<table>
<thead>
<tr>
<th>BS EN 932-1:1997 Sample Reduction</th>
<th>Sample No.</th>
<th>Original Bulk Mass (kg)</th>
<th>Sample Bag Mass (kg)</th>
<th>Representative Sample Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celtic-2</td>
<td>421</td>
<td>25.64</td>
<td>8.86</td>
<td></td>
</tr>
<tr>
<td>Celtic-25</td>
<td>209</td>
<td>26.62</td>
<td>6.56</td>
<td></td>
</tr>
<tr>
<td>Celtic-49</td>
<td>149</td>
<td>29.78</td>
<td>6.32</td>
<td></td>
</tr>
</tbody>
</table>
Visual Inspection (Field)

Blinding Sand:
- Colour
- Estimated particle size
- Moisture condition (*Dry, damp, wet*)

Infill:
- Colour
- Rock types (*Mudstone, shale, limestone, carbonaceous mudstone, etc.*)
- Particle size
- Particle shape (*Rounded, elongate, tabular, cuboid, sub-rounded, angular*)
- Moisture condition (*Dry, damp, wet*)
- Presence of coatings/crystal growth
Does the sample contain rock types associated with pyritic heave?

i.e. Weak, fine-grained sedimentary (muddy limestone, calcareous mudstone, shale) or metamorphic rocks

Geological Description

Particle size
Particle shape
Rock types (including proportion thereof)

Lithological detail:
Colour
Predominant grain size
Mineralogy
Laminations
Surface coatings
Staining
Hardness / Strength
Carbonates
Chemical Testing

- ‘Representative Sub-sample’ ….. 1-2 kgs, potentially more!
- Identify and measure concentration and composition of selected sulphur species
- Sample preparation
 - Avoid high heat and extensive milling, which may cause oxidation
- Tests:
 - Total sulphur (TS)
 - Acid-soluble sulphate (AS)
 - Water-soluble sulphate (WS)
- TS and AS allow determination of estimated pyrite content
- WSS indicates aggressiveness of fill to concrete materials
Total Sulphur (TS)

- Includes sulphates, sulphides, monosulphide sulphur, and organic sulphur.
- Allows an estimate of *original* pyrite content:

 \[
 \text{Original Pyrite (FeS}_2\text{)} = 1.87 \times \text{TS}
 \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
</table>
| TRL 447 Method - Test 4 | A: Microwave digestion of the sample using aqua regia, with determination of the liberated sulphur in solution using ICP-AES.
B: Rapid High Temperature Combustion Analysis (Leco) |

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Sample Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥500g initially, then 200-300g. Test portion is 300mg.</td>
<td>Dried at 100-105°C; Sieved to <2mm, Mixed and quartered/riffled to 200-300g; Milled to <212µm</td>
</tr>
</tbody>
</table>
Case Study Example – Total Sulphur

![Graph showing Total Sulphur (% S) vs Samples with different markers for Historical Infill, Celtic Infill, Mixed Infill, Replacement Infill, and a red line indicating I.S. 398-1 Suite 1 Threshold.]
Acid-Soluble Sulphate (AS)

- Acid soluble sulphur measured, with results expressed in %S. Results then converted to acid soluble sulphate by calculation:
 \[\text{AS (\%SO}_4) = 3 \times \text{acid soluble sulphur (as \%S)} \]

- Includes sulphur locked up in all sulphate minerals, such as gypsum (Ca\textsubscript{2}SO\textsubscript{4}.2H\textsubscript{2}O), anhydrite (CaSO\textsubscript{4}) and jarosite (KFe\textsubscript{3}(SO\textsubscript{4})\textsubscript{2}(OH)\textsubscript{6}).

Method Description

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRL447 Method - Test 2</td>
<td>HCl digestion, followed by ICP-AES analysis</td>
</tr>
</tbody>
</table>

Sample Size Sample Preparation

| ≥500g initially, then 200-300g. Test portion is 0.8 - 1.0g | Dried at 100-105°C; Sieved to <2mm, Mixed and quartered/riffled to 200-300g; Milled to <212µm |
Case Study Example – Acid Soluble Sulphur

Acid Soluble Sulphate (% SO₄)

Historicall Infill
Celtic Infill
Mixed Infill
Replacement Infill
I.S. 398-1 Limit (after EU Std)

Samples
Water Soluble Sulphate (WS)

- Assesses aggressiveness of fill to concrete materials in the presence of water (sulphate attack)
- Water soluble sulphur measured, with results expressed in %S. Results then converted to water soluble sulphate by calculation:

\[
WS (\text{mg/L SO}_4) = 15 \times 1,000 \times \text{water soluble sulphur (as %S)}
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRL Report 447, Test 1</td>
<td>Dissolved in distilled water, agitated for 16h then filtered; ICP-AES to determine sulphur content</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Sample Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine-grained soils 100g; Med-grained 500g; Coarse-grained 3kg</td>
<td>Sample passing 2mm sieve; pulverized to pass 425μm</td>
</tr>
</tbody>
</table>
Case Study Example – Water Soluble Sulphate

December 5, 2013
Estimated Pyrite Content (Current)

Calculate the Oxidisable Sulphide (OS) content:

\[OS = (3.0 \times TS) - AS \]

Where:
- OS = oxidisable sulphides as % \(\text{SO}_4 \)
- TS = Total Sulphur as % S
- AS = Acid-Soluble Sulphur as % \(\text{SO}_4 \)

Then assume all oxidisable sulphides are pyrite:

\[\% \text{ Pyrite (FeS}_2\text{)} = 0.623 \times OS \]

NOTE: Calculation may overestimate pyrite if barite (barium sulphate) is present
Mineralogical analysis - XRD

- X-Ray Diffraction (XRD) analysis used to detect and quantify gypsum, clay minerals, and sulphur-bearing minerals
- 20g powdered sample
- Detection limits range from 0.5% - 2% depending on minerals present and degree of crystallinity

X-ray Diffraction Analysis

Size Fraction: Whole Rock

<table>
<thead>
<tr>
<th>Petrolab Sample Ref</th>
<th>Client Sample Ref</th>
<th>Illite + Mica</th>
<th>Kaolinite</th>
<th>Chlorite</th>
<th>Quartz</th>
<th>K Feldspar</th>
<th>Plagioclase</th>
<th>Calcite</th>
<th>Dolomite</th>
<th>Siderite</th>
<th>Pyrite</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 1148</td>
<td>DA01</td>
<td>18.5</td>
<td>0.0</td>
<td>5.9</td>
<td>28.7</td>
<td>0.8</td>
<td>3.7</td>
<td>34.9</td>
<td>2.2</td>
<td>1.6</td>
<td>3.9</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: Chlorite composition is Mg-rich
Quantified by Siroquant (semi-quantitative)
XRD Trace

Pyrite 3.52%
Mineralogical Analysis - Petrography

- Determine the mineralogical characteristics of the sample
- Thin section analysis identifies alteration and weathering features, such as form and distribution of pyrite and presence of derived sulphate minerals (e.g. gypsum)

Methods:
- ASTM C295-03 *Standard Guide for Petrographic Examination of Aggregates for Concrete*

- Select samples of main lithologies for thin section preparation
- Use oil instead of water in sample preparation to preserve soluble minerals, e.g. gypsum
- Use both reflected and transmitted light
Petrographic Thin Sections
Mineralogical Analysis – SEM

- Scanning Electron Microscopy (SEM)
- Microanalysis uses numerous points of analysis on secondary electron image to produce elemental spectral compositions
- Used to confirm the presence of gypsum and to provide a general chemical analysis of the host material
Mineralogical Analysis - SEM

Spectrum 3

Gypsum

Spectrum 4

Gypsum

December 5, 2013
Physical Tests - Water Absorption

- Indicator of the ease which any contained pyrite will oxidise
- Determined by measuring the increase in mass of an aggregate due to water being absorbed into pores
- Representative sub-sample of bulk sample
- Sample size: 2kg minimum
- Results are expressed as a percentage of the dry mass of a sample
- High absorption values are indicative of high porosity and lower durability
- **Values** for the coarse fraction above 2% are of concern
Example – Water Absorption

- Max Allowed (Cl .804)
I.S. 398-1 Limit

- Limit for High
Quality Aggregate

Sample No.
Physical Tests - Crushing

Ten Per Cent Fines Value (TFV) Test

- Measure of resistance to crushing
- *BS 812-111: 1990 Testing aggregates - Methods for determination of ten per cent fines value (TFV)*
- 15 - 60kg of particles in the 10 mm to 14 mm size range
- Low TFV are indicative of weak aggregates, and confirm low quality
- NRA specification for Clause 804 (March 2000) sets a minimum TFV of 130kN
Example – Ten Percent Fines Value

Minimum Required (Cl. 804)
Physical Tests - Crushing

Ten Per Cent Fines Value (TFV) Test
- Measure of resistance to crushing
- BS 812-111: 1990 Testing aggregates - Methods for determination of ten per cent fines value (TFV)
- 15 - 60kg of particles in the 10 mm to 14 mm size range
- Low TFV are indicative of weak aggregates, and confirm low quality
- NRA specification for Clause 804 (March 2000) sets a minimum TFV of 130kN

Removed from Cl. 804 specification in 2004 and replaced with LAA
Physical Tests – Abrasion / Impact

Los Angeles (LA) Abrasion Test

- Impact and abrasion resistance of coarse aggregate
- BS 1097-2: 1998 Tests for mechanical and physical properties of aggregates - Methods for the determination of resistance to fragmentation
- 15kg of particles in the 10 to 14 mm size range
- The higher the LA coefficient, the poorer the infill material
- NRA specification for Clause 804 (May 2000) sets a maximum LA of 30%
Physical Tests – Abrasion / Impact

Los Angeles (LA) Abrasion Test

- Impact and abrasion resistance of coarse aggregate
- BS 1097-2: 1998 Tests for mechanical and physical properties of aggregates - Methods for the determination of resistance to fragmentation
- 15kg of particles in the 10 to 14 mm size range
- The higher the LA coefficient, the poorer the infill material
- NRA specification for Clause 804 (May 2000) sets a maximum LA of 30%

Poor correlation with field performance

Test performed on dry aggregates
Physical Tests - Abrasion

Micro-Deval Test

- Wet test for abrasion resistance and durability
- Provides a good indication of aggregate’s durability when exposed to weather and moisture
- **BS 1097-1: 1996 Determination of Resistance to Wear**
- 2kg of particles in the 10mm to 14mm size range
- Generally accepted upper limit for micro-Deval coefficient is 20 (Typical standards specify maximum values of 18 to 25)
Example - Micro-Deval

![Bar chart showing MicroDeval coefficients for various samples.](chart.png)

- Historical 14
- Celtic 1
- Celtic 2
- Celtic 25
- Celtic 45
- Celtic 49
- Mixed 77
- Mixed 83
- Mixed 84
- Replacement 60
- Replacement 78

Max Recommended: 20
Physical Tests – Magnesium Sulphate Soundness

- Degree of degradation resulting from repeated crystallisation and rehydration of MgSO₄ within the materials pores depends on soundness of aggregate
- **BS EN 1367-2: 1998 Tests for thermal and weathering properties of aggregates. Magnesium sulphate test**
- 500g of particles in the 10mm to 14mm range
- Higher the MS value, the less durable the aggregate
- NRA specification for Clause 804 (May 2004) sets a maximum MS value of 25%
- Test is mainly used to determine susceptibility of an aggregate to degradation by exposure to freeze-thaw cycles
Example – Magnesium Sulphate Soundness

![Bar Graph showing MS Value for different samples including Celtic 01, Celtic 02, Celtic 25, Celtic 45, Celtic 49, Mixed 83, Replacement 60, and Replacement 78. The graph indicates that Celtic 02 has the highest MS Value, while the others are below the Max Allowed (Cl. 804) line.]

December 5, 2013
Physical Tests - PSD

- Measures the grading of an aggregate sample with respect to different size fractions over the range of particle sizes
- Primary aggregate classification test
- Shape of grading curve and % of silt and clay fraction have large influence on aggregate performance
- BS EN 933-1:1997 Tests for geometrical properties of aggregates - Determination of particle size distribution. Sieving method
- Sample size dependent on particle size (60g to 80kg)
- Comparisons made with Clause 804 requirements
- High fines content (>8%) are of concern in high quality aggregate
 - Fines retain moisture which feeds oxidation of pyrite
 - Consistent with high clay content indicating a non-durable rock
 - Fines contents of up to 12% are common
Example – Particle Size Distribution

![Graph showing particle size distribution](image-url)
Physical Tests – Atterberg Limits

- Atterberg Limits testing evaluates the nature of the fine grained fraction in relation to the water content at which the state changes from liquid to plastic to semi-solid

- *BS 1377-2: 1990 Methods of test for soils for civil engineering purposes - Classification tests*

- 500g of sample in natural state (not dried)

- Fines in crushed rock aggregates should be non-plastic

- High liquid limits in crushed rock indicate low quality and the presence of fines with undesirable characteristics and potentially prone to volume change with changes in moisture content

- The NRA specification for Clause 804 sets a maximum limit of 20% for the liquid limit for limestone aggregates, and 21% for other rock types
Example – Liquid Limit

![Graph showing liquid limit values for different samples](image-url)

- Historical 14
- Celtic 1
- Celtic 2
- Celtic 25
- Celtic 49
- Mixed 77
- Mixed 83
- Mixed 84
- Replacement 60
- Replacement 78

Max Allowed (Cl. 804)
Laminated fine-grained sedimentary rocks usually produce flat and elongated or highly flaky particles.

Test measures the percentage of particles passing a slot width specified for that particular size fraction … flaky particles are those which pass through slots.

Sample size dependent on particle dimensions and proportions.

NRA specification for Clause 804 (May 2004) sets a maximum Flakiness Index of 35%.
Example - Flakiness Index

Flakiness Index (%)

Sample No.

Historical 14
Celtic 1
Celtic 2
Celtic 25
Celtic 45
Celtic 49
Mixed 77
Mixed 82
Replacement 78

Max Allowed (Cl. 804)
Test used to quantify the effect of clay minerals in an aggregate … and hence to indicate soundness

BS EN 993 – 9: 1999 Tests for geometrical properties of aggregates - Assessment of fines. Methylene blue test

- 200g minimum in the 0mm to 2mm size range
- Included in NRA specification for Cl 804, but no upper limit set yet
 - Values above 1.0g/kg would be cause for concern
- High MBA would be consistent with high Liquid Limit values as indicators of unsuitable construction aggregates
Example – Methylene Blue Absorption

![Methylene Blue Absorption Graph]

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Methylene Blue Value (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical 14</td>
<td>5.0</td>
</tr>
<tr>
<td>Celtic 1</td>
<td>2.0</td>
</tr>
<tr>
<td>Celtic 2</td>
<td>2.0</td>
</tr>
<tr>
<td>Celtic 25</td>
<td>2.0</td>
</tr>
<tr>
<td>Celtic 45</td>
<td>1.5</td>
</tr>
<tr>
<td>Celtic 49</td>
<td>1.0</td>
</tr>
<tr>
<td>Mixed 77</td>
<td>Max Allowed likely 1%</td>
</tr>
<tr>
<td>Mixed 83</td>
<td></td>
</tr>
<tr>
<td>Mixed 84</td>
<td></td>
</tr>
<tr>
<td>Replacement 78</td>
<td>0.0</td>
</tr>
</tbody>
</table>

December 5, 2013
CONCLUSION

PASS or FAIL or INCONCLUSIVE?
Questions?