Institute of Geologists of Ireland

Peat Stability Seminar

Geological Survey of Ireland, Beggars Bush, Haddington Road, Dublin 4

7th October 2010

DETERMING THE STABILITY OF PEAT SLOPES

Dr Paul Jennings

Applied Ground Engineering Consultants (AGEC) Ltd.,
Bagenalstown, County Carlow

Contents

- Definition of Peat Failure
- Types of Peat Failures
- Approaches to Determining Stability
 - Geomorphological
 - Qualitative (judgement)
 - Index/Probabilistic (probability)
 - Deterministic (factor of safety) Most common
- Deterministic Approach
 - Basic models
 - Short and long term conditions
 - Shear strength
 - Potential shear surfaces
- Summary

Definition of Peat Failure

Basal shear surface – on peat

Basal shear surface – on mineral soil

Basal shear surface – on rock

Emergent shear surface (at base of peat)

Emergent shear surface (in mineral soil)

Debris trail - multiple

Debris trail

Debris trail

Debris trail (close-up)

Debris deposition

Types of Peat Failures

- Peat failures classified as follows (Hutchinson, 1988)
- Peat slides
 - Mass of intact peat moves down slope
 - Failed peat moves on discrete sliding plane
 - Generally affects blanket bogs
- Peat flows or 'bog bursts'
 - Peat and water flow down-slope
 - Generally behaves as a viscous fluid
 - Generally affects raised bogs

Main Approaches

- Geomorphological
- Qualitative (judgement)
- Index/Probabilistic (probability)
- Deterministic (factor of safety)

Geomorphological Approach

Geomorphological Approach

Qualitative Approach

Index/Probabilistic Approach

- Relies on compilation of a number of salient factors
- Typical factors include

Topography

Ground slope angle, surface slope angle at base of peat, slope profile (convex/concave/straight), proximity to convex break in slope (upslope/downslope)

Peat

Peat depth, water content, shear strength (peak, residual, drained, undrained) peat classification (von Post)

Underlying soil/rock

Soil at base (granular/cohesive), rock type, strength, permeability

Hydrology/hydrogeology

Springs, seepage, sub-surface piping, man-made water courses, natural water courses, permeability contrasts, concentrated surface/sub-surface flow

Vegetation

Type of vegetation, stunted growth vegetation, propensity for aquatic species

Previous slides

Evidence of previous slides, tension cracks, hummocky/disturbed terrain

Land use

Peat workings, drained peat, forestry, agriculture (rough grazing)

Index/Probabilistic Approach

- Index approach scores factors/uses weighting and combines
- eg W1.F1 + Ws.F2 + W3.F3 + (simple summation)
- eg 100(W₁.F₁/W_s.F₂) x W₃.F₃..... (algorithm)
- Probabilistic approach uses factors with statistical techniques
- eg multiple regression, discriminant analysis
- Index approach commonly used (but not optimised)
- Probabilistic approach not commonly used (better optimised)
- Neither approach provides a definitive indication of stability

Deterministic Approach

- Numerical analysis (FEM)
- Classic factor of safety approach
- Analysis using non-circular or infinite slope

Infinite Slope

- Sliding (translational) dominant failure mechanism
- Sliding (shear) surface generally at/near base of peat
- Models available to determine sliding stability
- Infinite slope readily applicable to translational slide

```
F = \frac{Cu}{\gamma \, z \, \text{sin} \, \alpha \, \text{cos} \, \alpha}
Where,
F = Factor \, \text{of Safety}
cu = Undrained \, \text{cohesion}
\gamma = \text{Bulk unit weight of soil (peat)}
z = \text{Depth to failure plane (usually base of peat)}
\alpha = \text{Slope angle}
```


Analytical considerations

- Short and long term conditions
 (eg failure triggered by loading or ingress of water)
- Shear strength
- Potential shear surfaces

Short term failure - loading

Anaholty Bog, Nenagh Bypass, Co Tipperary

Ref: Raven, K & Assinder, P. (2008). Use of Geotextiles in Construction over Soft Ground. Thames Valley Geological Society/International Geosynthetic Society, Royal Holloway College

Short term failure - unloading

Wind farm site

Long term failure - ingress of water

Typical natural sub-surface pipe

Glencolmcille, Co Donegal

Shear strength - undrained

- undrained

- Shear Vane Results
- Direct Simple Shear
- Triaxial Unconsolidated Undrained CPT

Shear strength - drained

Shear strength – drained (Landva, 1980)

Potential failure surfaces - depth

Analysis Results - chart showing slope angle vs. peat depth for various c_u

Analysis Results - factor of safety approach at spot locations

Analysis Results - factor of safety approach using multiple locations

Summary

Main approaches

- Geomorphological
- Qualitative
- Index/Probabilistic
- Deterministic

- Provide valuable insight and allow informed decisions
- Can include numerous useful predictive factors

But

- High level of judgement/experience required
- Difficult to relate score/probability results to real conditions

Deterministic

- Most common/accepted engineering approach
- Sliding (translational) dominant failure mechanism
- Models available include non-circular, infinite slope
- Provides 'direct' measure of stability
- Not all parts of failure mechanism fully understood
- Uses limited number of factors
- Determining operational shear strength is difficult

Finish

Thank You

