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 Creep and Rate Dependency;  

 Inclusion of Orthotropy; and 
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Some Features of Organic Soils  

 Mixture of fragmented organic material formed in wetlands ; 

 The soil has essentially an open structure with interstices filled 

with a secondary structural arrangement of nonwoody, fine 

fibrous material.  If >20% fibre content classified as fibrous;   

 Fibrous peat differs from amorphous peat in that it has a low 

degree of decomposition and easily recognizable structure;  

 The compressibility of fibrous peat is very high and so it’s rate 

of consolidation;  

 Formation of peat deposits leads to a pronounced structural 

anisotropy in which the fibres tend to have horizontal 

orientation; and 

 Under a consolidation, deformation is directionally dependent 

and water tends to flow faster from the soil in the horizontal 

direction than in the vertical direction.
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Design Requirements

 When designing a foundation for an embankment its influence on its 

surroundings is often an important issue;  

 In considering this influence a proper indication of horizontal deformations and 

horizontal stresses in the subsoil is needed;  

 Many sediment deposits are deposited in horizontal strata, so it is to be 

expected that their mechanical properties in both horizontal directions might 

differ from their properties in vertical direction;  

 It is widely recognized that soft soil might show anisotropic behaviour;  

 Soft soil is often described as an anisotropic heterogeneous material. Each soil 

property like permeability, stiffness or strength might show anisotropic 

behaviour. 
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Laboratory Testing 

 Laboratory testing methods to test for the shear strength of peat are generally 

the same as for traditional soils.  

 Triaxial compression (TXC), direct shear (DS), direct simple shear (DSS) and 

ring shear (RS) have been used to measure undrained and effective strength 

properties. 

 Laboratory testing of peat strength properties is complicated by several factors, 

as follows.

 It is difficult to obtain and prepare samples because of the high water 

content and fibres.

 Corrections related to apparatus compliance and membrane stiffness can be 

a large percentage of the measured strength.

 Interpretation of actual failure is difficult because of the large strains involved 

and excessive deformation.

 Structural anisotropy as a result of the presence of fibres within peat can 

cause artificial reinforcement of the sample
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Numerical Modelling

 What is Numerical Modelling?  

 Wikipedia (2009), “A computer 

simulation, a computer model or a 

computational model . . . . that 

attempts to simulate a particular 

system. Computer simulations have 

become useful in the process of 

engineering, . . . to gain insight into 

the operation of those systems, or to 

observe or understand their 

behaviour or limits.”  

 Types of Numerical Modelling? 

 Semi analytical approximations;  

 Stress modelling –

continuous/discontinuous 

 What they all have in common is .   

 They all look to solve Complex Equations 

that bound a specific problem  
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Geomechanical Modelling

Tunnel Integrity

Soft soil foundations

Slope Stability
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Material Characterisation

 Categories of Material

 Continuous;  

 Homogeneous; 

 Isotropic; 

 Linear . . . .  

 Elastic. 

 Discontinuous; 

 Inhomogeneous; 

 Anisotropic; 

 Not . . . 

 Elastic.  
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A few numerical approaches are CHILE 
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Constitutive Model Overview  

 Several models based on Critical State Theory including:  

 Elastic and Poro-Elastic models

 Orthotropic Modified Cam Clay (transverse isotropic materials);  

 A series of soft soil/rock models based on critical state theory.  These have 

different levels of sophistication including:

 Standard hardening/softening formulations; 

 Rate dependent hardening/softening formulations; 

 Combined short-term rate dependent failure and long-term creep; 

 Models which represent the evolution of the material state due to lithification; 

 Depth (porosity) dependent initial yield surface.  

 Traditional strength criteria may also be employed e.g. Mohr Coulomb, Drucker-

Prager, etc.
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Isotropic Critical State Failure Model

 The critical state approach is often 

selected since its basis is derived 

from the experimental measurement 

of soils at large strain conditions; 

 The isotropic Cam Clay form has 

been frequently employed, but with 

the inclusion of a number of 

particular aspects to allow improved 

representation of many different 

material types, including: 

 Fibrous materials such as peat; 

 Laminated shales; 

 Time (rate/creep) dependent 

materials such as chalk.  

 The form of the failure surface in 

Pressure (P) vs Deviatoric Stress (q) 

space; 
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Isotropic Critical State Failure Model

 Components of the characterised 

constitutive framework:  

 Transverse isotropic elasticity; 

 Orthotropic pressure dependent 

yielding surface based on critical 

state soil mechanics; 

 A smoothly varying yield 

surface, that is non-circular in 

the deviatoric plane; 

 A non-associated flow rule; 

 Mesh objectivity of the solution 

is achieved by incorporating 

fracture energy concepts; 
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Critical State Failure Model – Strain Hardening
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 Hardening of the model is achieved 

through expansion of the yielding 

surface (by variation of the two 

parameters Pc and Pt with respect 

to the volumetric plastic strain level). 

 This then modifies the size of the 

yielding envelope based on material 

failure. 



Critical State Failure Model – Creep

 The incremental creep strain is defined 

as

 Defines the relationship between the rate 

independent pre-consolidation pressure 

(pc) and the pre-consolidation pressure 

of the rate dependent surface (pc*), 

 The creep strain rate is therefore 

nonlinear dependent on both: 

 The relative magnitude of the rate 

independent and rate dependent 

surfaces.

 The magnitude of deviatoric stress; 

i.e. the creep strain rate increases at 

higher deviatoric stress levels.
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Critical State Failure Model

 The Isotropic Yield Surface

 The form of the yielding function used to 

define the failure surface is given by:  

 Where 

 Where P is the effective mean stress, Pc

is the pre-consolidation pressure, and Pt

is the tensile intercept (strength).  

 The term beta is a material constant that 

defines the shape of the consolidation 

side of the failure envelope.  

 The  deviatoric stress q is defined in the 

standard manner of:  

 Where J2 is the second invariant of the 

deviatoric stress tensor S; 

 We include the projection matrix P such 

to compute the deviatoric stress from the 

globally aligned stress tensor sigma.  

 We define projection matrix as the 

following: 
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Structurally Anisotropic Materials 

 Most typical features of such materials: 

 The variation of the compressive strength with the angle between the 

“fabric/bedding” and loading is such that the maximum strength occurs when the 

loading direction is either P or N to the layering; 

 The minimum stress occurs when the loading to “fabric/bedding” orientation 

ranges 30° - 60° where high shear induces failure on the laminations; 

 The elastic properties are transverse isotropic with the Elastic Modulus normal to 

the “fabric/bedding” being less than the in plane;  

 The elastic properties are a nonlinear function of confining pressure and 

effective stress.
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Structurally Anisotropic Materials 

 The transverse isotropic nature of the material may be represented within a finite 

element framework in a number of ways, these include:

 Inclusion of an embedded weakness description via a smeared law, however 

this neglects the true compactive behaviour of the materials at higher 

confinement levels.

 Direct representation of the “fabric/bedding” weakness as an interface with 

adhesive, cohesive and frictional properties, however due to fabric dimensions 

this is just not practical.

 Representation of the macroscopically observed deformations using a 

phenomenological constitutive model based, for example orthotropic 

elastoplasticity.  
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Orthotropic Transformation

 Local Coordinate System 

Definition

 We use a simple specification of three 

nodal points to define the system; 

 Node 1 defines the origin of the 

coordinate system and node 2 defines 

the local x’ axis; 

 For three-dimensional applications, node 

3 defines the x’-y’ plane.

October 7, 2010 17

 Orthotropic Transformation

 We employ a local coordinate system to 

transform global coordinate measures 

(material variables) to an alternative 

coordinate system that coincides with 

material fabric directions; 



Transverse Isotropic Elasticity

 We define the elastic response of any 

orthotropic material through use of the 

locally orientated (transformed) 

coordinate system by using the linear 

Hooke’s Law relationship:  

 Here D is the matrix of the stiffness 

constants  that interrelates the elastic 

stress and strain vectors respectively.  

The superscript l indicates the 

relationship is defined in the orientated 

material fabric coordinate system.  

 For transverse isotropic materials like 

Opalinus Clay we only need specify nine 

elastic (stiffness) constants to provide an 

appropriate response;  

 The required elastic constants are: 

 E1 – the Elastic Modulus in the 

direction normal to the bedding 

plane

 E2 – the in plane Elastic Modulus; 

 G12 – the out of plane Shear 

Modulus; 

 V23 – the in plane Poisson ratio; and

 V12 – the out of place Poisson ratio. 

 Of these constants it is possible to 

estimate the shear modulus variable 

G12 from the standard St-Venants

formula:  
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Critical State Failure Model - Orthotropy

 The Orthotropic Extension

 The isotropic yielding function may be 

extended to consider orthotropic 

behaviour by rewriting of the deviatoric 

stress equation, such that: 

 Leading to the orthotropic yielding 

function to take the modified form of:  

 Where the projection matrix P is now 

written in orthotropic notation, such that: 

 As defined in previous notation the 

vector of stress variables that are aligned 

with the fabric of the material;  

 We also make use of Hill’s orthotropy

notation derived for metals, in that 

 Where the material constants 1- 9 

control the failure value in the orthotropic 

framework;  

 For the transverse isotropic case for the 

Opalinus Clay this simplifies to only 4-

9 being needed . . . . . . . . . . 
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Critical State Failure Model - Orthotropy

 The transverse isotropic condition then 

follows that:  

 This then permits the orthotropy matrices 

to be simplified to:  

 This then results in three unknown 

parameters 4- 6 that need to be 

derived from TXC investigations at 

different fabric angles.  

 We define the peak deviatoric stress 

values in terms of the angle of lamination 

for a constant confinement pressure; 

 We solve for the matrix of unknown 

parameters using an incremental 

(iterative) solution of the deviatoric stress 

equation to come up with the projection 

matrix Porth
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Porous Flow - Orthotropy

 Orthotropy – Flow/Heat

 We employ a transformation of the global 

coordinate system stress/strain variables 

to the material lamination aligned 

system; 

 We employ an analogous transformation 

approach for the material properties 

required for the porous flow solution;  

 Standard isotropic porous flow modelling 

requires specification of:  

 The isotropic permeability kiso; 

 The material porosity (voids ratio) & 

saturation; 

 The grain and fluid stiffness's; 

 The Biot constant; 

 We are then able to define the 

orthotropic permeability in the 

transformed (lamination specific) 

coordinate system with simple scalar 

multiplication of the isotropic intrinsic 

permeability, such that

 Where the constants f1-f3 are the factors 

defining the ratio to the isotropic 

permeability.  

 The coordinate system transformation 

employed for the porous flow properties 

is identical to that for both the 

mechanical (strength) and thermal field 

types.  
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