

UNEXMIN DELIVERABLE D1.1

UX1 ROBOTIC PLATFORM PROTOTYPE REQUIREMENT SPECIFICATION

Summary

This requirement specification document is based on analysis and synthesis of UX1 end user requirement specification and limits of available technology. It identifies most essential technical design requirements and specifications to be used throughout the prototype design and provides unambiguous engineering metrics for their measure.

Authors

Jussi Aaltonen Soheil Zavari Arttu Heininen Jouko Laitinen Tuomas Salomaa

This project has received funding from the European Union's Horizon 2020research and innovationprogramme under grant agreement No 690008.

Lead beneficiary:		Tampere University of Technology (TUT)		
Other beneficiaries:				
	Due date:	M4		
	Nature:	Report		
Diffusion		Confidential		
Revision history	Author	Delivery date	Summary of changes	
Version 1.0	Jussi Aaltonen	18.05.2016		
Version 2.0				
Version 3.0				
Version 4.0				
Version 4.1				

Approval status				
Function	Name	Date	Signature	
Deliverable responsible	Jussi Aaltonen	18.05.2016	fo-t-	
Reviewer 1	Jorge Carvalho	08.06.2016	joyo Com the	
Reviewer 2	Claudio Rossi	08.06.2016	Claudid Rom	
WP leader	Jussi Aaltonen	27.06.2016	fe-C-	
Project leader	Norbert Zajzon	30.06.2016	23-A	

Disclaimer: This report reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

Table of Contents

1	In	Introduction		
	1.1	Description of UX1 and its mission	7	
	1.2	Scope of this report	7	
2	Pr	ototype technical requirements and specifications	8	

List of Tables

Table 1 Technical requirements and specifications

Acronyms and Abbreviations:

SONAR	Sound navigation and ranging
LIDAR	light detection and ranging
INS	Inertia navigation system
DVL	Doppler velocity log

1 Introduction

UX1 prototype technical design requirements and specifications are set by constraints and requirements given in UX1 end user requirement specification and limits of available technology. This requirement specification document is based on analysis and synthesis of them.

1.1 Description of UX1 and its mission

There are number of abandoned old flooded mines in Europe, with inadequate information of their current status. Exploring and surveying such mines is both infeasible and hazardous for humans. UX1 is an autonomous robotic platform for survey and exploration of such mines. UX1 is to autonomously explore and survey such mines in order to provide high resolution data and information from these inaccessible environments.

1.2 Scope of this report

This report identifies most essential technical design requirements and specifications to be used throughout the prototype design of UX1 and provides unambiguous engineering metrics for their measure.

2 Prototype technical requirements and specifications

Table below contains prototype technical requirements and specifications for UX1. Requirements and specifications are classified as demands and wishes depending on their importance. Items classified as demands must be complied in in order to meet end-user requirements.

	Demand/ Wish	Item	Responsible
Performance	D D D D D D U W	Max operating depth: 500 m Speed: 2 km/h (max. continuous) Five hour independent operation time Manoeuvrability – Able to manoeuvre out of dead ends without turning Able to manoeuvre in vertical shafts Able to manoeuvre in horizontal tunnels Able to manoeuvre in long large diameter galleries Able to manoeuvre in open pits without assistance	
Structural Design	D D W D D W D	Geometry: Spherical, Diameter < 60 cm <u>Total dry weight:</u> < 113 kg Streamlined Design safety factor = 2 Test pressure: 60 bar Design safe life > 1000 missions to max. depth Acid resistant materials	TUT
Controller Unit	D W D W D	Geometry: < 300170 [*] 80mm Weight: < 4 kg Operating voltage: 12 < VDC< 24 Interfaces: Ethernet, UDP, RS232, USB, TTL, AI/O Controller unit must be able to self-recover in case of software crashing or hang-up	TUT
Propulsion System	D D D W D D D D	Thrusters: Geometry: < 150 (L) * 110 (D) mm Weight: < 0.5 kg / unit Operating specification: 1.4 N < Thrust < 5 N Operating voltage: 12 < VDC < 24 Quantity: Optimal configuration of thrusters to maximize manoeuvrability and minimize drag Ballast system, pump: Operating voltage: 12 < VDC < 24 Weight: < 2 Kg Ballast system, bladder: Volume: 5 I Weight: < 6 Kg	TUT

Table 1 Technical requirements and specifications

	Navigation and	D	System total weight: 15 kg	INESC & UPM
1	mapping	W	3D acoustic camera	
I		D	SONAR	
I		D	Laser structured light (for LIDAP)	
			200 de mas hages light	
		D	360 degree beam light	
		D	EO camera	
		D	DVL with fluid flow measurement capability	
			(abs.velocity)	
		D	INS	
		D	Operating voltage of all equipment: 12 < VDC < 24	
	Batteries	D	Quantity: 4 - 5 units	тит
		D	C_{0}	
		D	$\frac{\text{deometry}}{\text{deometry}} = 200 \text{ (c)} 80 \text{ (H)} 80 \text{ (W) mm}$	
		D	weight: < 2 kg / unit	
		D	<u>Capacity:</u> > 16000 mAh	
		D	Nominal voltage: 12< VDC<24	
		D	Redundant set-up	
		D	Management system which able to monitor	
			remaining capacity with + 2% accuracy	
		D	Charging must be possible without removing	
			hatteries	
		D	Battery management system must provide	
		-	protection for short singuit and over beating	
		14/	Protection for short circuit and over nearing	
		vv	Batteries must be field replaceable	
	Instrumentation	D	System total weight: 5 kg	UNIM
		D	Predefined instruments on robot surface and two	
			pcs sealed cylindrical pocket with electrical	
			connection for bigger instruments; dia150x150mm	
		D	Hyperspectral camera	
		D	Pressure, temperature, pH and EC sensors pH	
		D	Water sampler, 30 - 60 water samples: 5 - 10	
		D	ml/samples	
		D	Magnetic Eield Sensor	
			Comme commenter	
		U	Gamma counter	
			Operating voltage: 12< VDC<24	
	Cooling system	D	Able to keep all electronics in safe stable operating	TUT
			temperature	
		D	Total weight: 4 kg	
		W	Water cooling system	
	Maintanability	D	All systems must be field serviceable in	
	usability		underground mine environment	
	roliobility	14/	All accontial cyctome must have huilt in	
	reliability	vv	All essential systems must have pullt in	
			reaunaancy	
		U	All programmable controllers must be able to self-	
			recover	
		D	Robot must have leak detection system	